Given: polar vector from #(0,0)# to #(5, pi/12)#
This vector is in the first quadrant.
A polar vector: #(r, theta) = (5, pi/12)#
#x#-component #= r cos theta = 5 cos (pi/12)#
#y#-component #= r sin theta = 5 sin (pi/12)#
Using Half-angle formulas you can find the exact value of the angle #pi/12 = (pi/6)/2# :
#cos (a/2) = +- sqrt((1+cos a)/2); " "sin (a/2) = +- sqrt((1-cos a)/2)#
#cos ((pi/6)/2) = sqrt((1+cos (pi/6))/2)#; #" "sin ((pi/6)/2) = sqrt((1-cos (pi/6))/2)#
#cos (pi/6) = cos 30^o = sqrt(3)/2#
#cos(pi/12) = sqrt((1+sqrt(3)/2)/2)#; #" "sin(pi/12) = sqrt((1-sqrt(3)/2)/2)#
#cos(pi/12) = sqrt(((2+sqrt(3))/2)*1/2) = sqrt(2+sqrt(3))/2#
#sin(pi/12) = sqrt(((2-sqrt(3))/2)*1/2) = sqrt(2-sqrt(3))/2#
#x#-component #= r cos theta = 5 sqrt(2+sqrt(3))/2#
#y#-component #=r sin theta = 5 sqrt(2-sqrt(3))/2#