What are the components of the vector between the origin and the polar coordinate (9, (-pi)/4)(9,π4)?

1 Answer

x=(9sqrt2)/2x=922
y=(-9sqrt2)/2y=922

Explanation:

Given (r, theta)=(9, -pi/4)(r,θ)=(9,π4)

x=r cos theta=9*cos (-pi/4)x=rcosθ=9cos(π4)
x=9*1/sqrt2=9/sqrt2=(9*sqrt2)/(sqrt2)^2=(9sqrt2)/2x=912=92=92(2)2=922

y=r sin theta=9*sin (-pi/4)y=rsinθ=9sin(π4)
y=9*-1/sqrt2=-9/sqrt2=(-9*sqrt2)/(sqrt2)^2=(-9sqrt2)/2y=912=92=92(2)2=922

God bless....I hope the explanation is useful.