What are the components of the vector between the origin and the polar coordinate #(2, (-5pi)/6)#?

1 Answer
Sep 5, 2016

#((-sqrt3),(-1))#

Explanation:

To convert from #color(blue)"polar to cartesian coordinates"#

That is #(r,theta)to(x,y)#

#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(x=rcostheta , y=rsintheta)color(white)(a/a)|)))#

here r = 2 and #theta=-(5pi)/6#

#rArrx=2cos(-(5pi)/6)" and " y=2sin(-(5pi)/6)#

#color(orange)"Reminder"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(cos(-(5pi)/6)=-cos(pi/6))color(white)(a/a)|)))#

and #color(red)(|bar(ul(color(white)(a/a)color(black)(sin(-(5pi)/6)=-sin(pi/6))color(white)(a/a)|)))#

#rArrx=-2cos(pi/6)=-2xxsqrt3/2=-sqrt3#

and #y=-2sin(pi/6)=-2xx1/2=-1#

Thus the components of the vector are #((-sqrt3),(-1))#