What are the components of the vector between the origin and the polar coordinate #(3, (19pi)/12)#?

1 Answer
Feb 23, 2018

see Details below.

Explanation:

enter image source here

#Given r = 3, theta = (19pi)/12#

To find components of the vector between origin and the given point (3,(19pi)/12#

#theta =( (19pi)/12)^c = 285^@#

#x = r cos theta = 3 * cos ((19pi)/12) = 0.7765#

#y = r sin theta = 3 * sin ((19pi)/12) = -2.8978#

#tan theta = tan ((19pi)/12) = y / x = - 2.8978 / 0.7765 = -3.7321#

In rectangular form #(x,y) = (0.7765, -2.8978)#

In polar form #(r, theta) = (3, (19pi)/12)#

Slope of the vector m = tan theta = - 3.7321#

Vector is in the IV quadrant.