What are the vertex, focus and directrix of # y=x^2 – 6x + 5 #?

1 Answer
Dec 22, 2017

Vertex #(3,-4)#
Focus #(3, -3.75)#
Directrix #y=-4.25#

Explanation:

Given -

#y=x^2-6x+5#

Vertex

#x=(-b)/(2a)=(-(-6))/(2xx1)=6/2=3#

At #x=3#

#y=3^2-6(3)+5=9-18+5=-4#

Vertex #(3,-4)#

Focus and Directrix

#x^2-6x+5=y#

Since the equation is going to be in the form or -

#x^2=4ay#

In this equation #a# is focus

the parabola is opening up.

#x^2-6x=y-5#

#x^2 -6x+9=y-5+9#
#(x -3)^2=y+4#

To find the value of #a#, we manipulate the equation as -

#(x-3)^2=4xx 1/4 xx(y+4)#

#4 xx1/4=1# So the manipulation didn't affect the value #(y+4)#

The value of #a=0.25#

Then Focus lies 0.25 distance above vertex

Focus #(3, -3.75)#

Then Directrix lies 0.25 distance below vertex#(3, -4.25)#

Directrix #y=-4.25#

enter image source here