What does #sin(arc tan(2))+3cot(arctan(-1))# equal?

1 Answer
Mar 22, 2016

#2/sqrt5-3#

Explanation:

If #tan A = 2/1, sin A = 2/sqrt(2^2+1^2)=2/sqrt5#/
If tan B = #-1, cot B = 1/(-1)=-1#.
#sin(arc tan(2)) + 3 cot (arc tan (-1))#
= #sin(arc sin(2/sqrt5)) + 3 cot (arc cot (-1) )#
= #2/sqrt5+3(-1)= 2/sqrt5-3#

IF #O^(-1)# is the inverse of the operator O,
#O(O^(-1))-=O^(-1)(O) -= 1# -

Examples: sin (arc sin x ) = x and #a^(log_a x)# = x.