What does #sin(arccos(6))-csc(arccos(12))# equal?

1 Answer
Dec 12, 2015

#sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i#

Explanation:

The range of #cos(x)# is #[-1, 1]#, so with #cos# as a Real function, #arccos(6)# and #arccos(12)# are undefined.

However, it is possible to define Complex valued functions of Complex numbers, #cos(z)# and #sin(z)# using the identities:

#e^(iz) = cos z + i sin z#

#cos(-z) = cos(z)#

#sin(-z) = -sin(z)#

to find:

#cos(z) = (e^(iz)+e^(-iz))/2#

#sin(z) = (e^(iz)-e^(-iz))/(2i)#

We find:

#cos^2 z + sin^2 z#

#=(e^(iz)+e^(-iz))^2/4 + (e^(iz)-e^(-iz))^2/(2i)^2#

#=((e^(iz)+e^(-iz))^2 - (e^(iz)-e^(-iz))^2)/4#

#=4/4 = 1#

So the identity #cos^2 z + sin^2 z = 1# still works.

Hence:

#sin(arccos(6)) = sqrt(1-6^2) = sqrt(-35) = sqrt(35) i#

#csc(arccos(12)) = 1/sin(arccos(12)) = 1/sqrt(1-12^2) = 1/sqrt(-143) = 1/(isqrt(143)) = -sqrt(143)/143 i#

So:

#sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i#