What does #sqrt(3+7i)*(12+5i)^2# equal in a+bi form?

2 Answers
Aug 28, 2017

#sqrt(3+7i)(12+5i)^2=a+bi#, where #a=119sqrt(sqrt58/2+3/2)-120sqrt(sqrt58/2-3/2)# and #b=120sqrt(sqrt58/2+3/2)+119sqrt(sqrt58/2-3/2)#

Explanation:

Let #sqrt(3+7i)=x+iy#, then #3+7i=(x^2-y^2)+2ixy#

Therefore #x^2-y^2=3# and #2xy=7# and

#(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2=3^2+7^2=58#

and #x^2+y^2=sqrt58#

i.e. #2x^2=sqrt58+3# and #x=sqrt(sqrt58/2+3/2)#

and similarly #y=sqrt(sqrt58/2-3/2)#

and #sqrt(3+7i)=sqrt(sqrt58/2+3/2)+isqrt(sqrt58/2-3/2)#

As #(12+5i)^2=144-25+120i=119+120i#

#sqrt(3+7i)(12+5i)^2=(119+120i)(sqrt(sqrt58/2+3/2)+isqrt(sqrt58/2-3/2))#

= #119sqrt(sqrt58/2+3/2)+120isqrt(sqrt58/2+3/2)+i119sqrt(sqrt58/2-3/2)-120sqrt(sqrt58/2-3/2)#

= #[119sqrt(sqrt58/2+3/2)-120sqrt(sqrt58/2-3/2)]+i[120sqrt(sqrt58/2+3/2)+119sqrt(sqrt58/2-3/2)]#

Hence #sqrt(3+7i)(12+5i)^2=a+bi#, where #a=119sqrt(sqrt58/2+3/2)-120sqrt(sqrt58/2-3/2)# and #b=120sqrt(sqrt58/2+3/2)+119sqrt(sqrt58/2-3/2)#

Aug 28, 2017

#sqrt(3+7i)(12+5i)^2#

#= (60 sqrt(2sqrt(58)-6) + 119/2 sqrt(2sqrt(58)+6))+(60 sqrt(2sqrt(58)+6) - 119/2 sqrt(2sqrt(58)-6))i#

Explanation:

Note that:

#abs(3+7i) = sqrt(3^2+7^2) = sqrt(9+49) = sqrt(58)#

Since this is not a whole number, the square root of #3+7i# has irrational real and imaginary parts. So it's not worth trying to guess.

Note that:

  • #3+7i# is in Q1, so it has principal square root in Q1 and non-principal square root in Q3.

  • Its complex conjugate #3-7i# is in Q4 with square roots in Q4 and Q2.

Note that if:

#x = sqrt(3+7i)#

Then:

#x^2 = 3+7i#

and:

#(x^2-3)^2 = (7i)^2 = -49#

So #sqrt(3+7i)# is the root in Q1 of:

#0 = (x^2-3)^2+49#

#color(white)(0) = x^4-6x^2+9+49#

#color(white)(0) = x^4-6x^2+58#

Note that:

#(x^2-kx+sqrt(58))(x^2+kx+sqrt(58)) = x^4+(2sqrt(58)-k^2)x^2+58#

Equating coefficients:

#-6 = 2sqrt(58)-k^2#

Hence:

#k^2 = 2sqrt(58)+6#

So:

#k = +-sqrt(2sqrt(58)+6)#

Thus #sqrt(3+7i)# is the Q1 zero of:

#(x^2-sqrt(2sqrt(58)+6)x+sqrt(58))(x^2+sqrt(2sqrt(58)+6)x+sqrt(58))#

In order for the real part to be positive, we need the first of these two quadratics to be #0#.

So using the quadratic formula with #a=1#, #b=-sqrt(2sqrt(58)+6)# and #c=sqrt(58)#, we find:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#color(white)(x) = (sqrt(2sqrt(58)+6)+-sqrt((2sqrt(58)+6)-4sqrt(58)))/2#

#color(white)(x) = sqrt(2sqrt(58)+6)/2+-sqrt(2sqrt(58)-6)/2i#

In order for the imaginary part to have poositive coefficient, we need the #+# sign here.

The other factor is a little simpler:

#(12+5i)^2 = (12^2-5^2)+2(12)(5)i#

#color(white)((12+5i)^2) = (144-25)+120i#

#color(white)((12+5i)^2) = 119+120i#

So:

#sqrt(3+7i)(12+5i)^2#

#= (sqrt(2sqrt(58)+6)/2+sqrt(2sqrt(58)-6)/2i)(119+120i)#

#= (60 sqrt(2sqrt(58)-6) + 119/2 sqrt(2sqrt(58)+6))+(60 sqrt(2sqrt(58)+6) - 119/2 sqrt(2sqrt(58)-6))i#