What is #int tan^2(2x) sec^4(2x) dx#?

2 Answers
Apr 8, 2018

#I=1/30(3tan^5(2x)+5tan^3(2x))+C#

Explanation:

We want to solve

#I=inttan^2(2x)sec^4(2x)dx#

Rewrite the integrand using the trig identity

#color(blue)(sec^2(a)=1+tan^2(a)#

Thus

#I=inttan^2(2x)(1+tan^2(2x))sec^2(2x)dx#

Make a substitution #u=tan(2x)=>du=2sec^2(2x)dx#

#I=1/2intu^2(1+u^2)du#

#color(white)(I)=1/2intu^4+u^2du#

#color(white)(I)=1/2(1/5u^5+1/3u^3)+C#

#color(white)(I)=1/30(3u^5+5u^3)+C#

Substitute back #u=tan(2x)#

#I=1/30(3tan^5(2x)+5tan^3(2x))+C#

Apr 8, 2018

#inttan^2(2x)sec^4(2x)dx=tan^3(2x)/6+tan^5(2x)/10+C#

Explanation:

#inttan^2(2x)sec^4(2x)dx#

= #inttan^2(2x)(1+tan^2(2x))^2dx#

if #u=tan(2x)# then #du=2sec^2(2x)dx=2(1+u^2)dx#

or #dx=(du)/(2(1+u^2))#

and #inttan^2(2x)(1+tan^2(2x))^2dx#

= #intu^2(1+u^2)^2(du)/(2(1+u^2))#

= #1/2int(u^2(1+u^2))du#

= #1/2int(u^2+u^4)du#

= #u^3/6+u^5/10+C#

= #tan^3(2x)/6+tan^5(2x)/10+C#