What is the axis of symmetry and vertex for the graph #y= -3/5x^2 + 6x -1#?

1 Answer
Jan 28, 2017

the axis of symmetry is #x=5#
the vertex is #V(5;14)#

Explanation:

Since from the general equation #y=ax^2+bx+c#. the formulas for the axis of symmetry and the vertex are respectively:

#x=-b/(2a)#

and

#V(-b/(2a); (4ac-b^2)/(4a))#,

you would get:

#x=-cancel6^3/(cancel2*(-3/5))=cancel3*5/cancel3=5#

and

#V(5;(4*(-3/5)* (-1)-6^2)/(4*(-3/5)))#

#V(5;(12/5-36)/(-12/5))#

#V(5;(-168/cancel5)/(-12/cancel5))#

#V(5;14)#

graph{y=-3/5x^2+6x-1 [-5, 10, -5, 20]}