What is the derivative of this function #e ^ sin (2x)#?

2 Answers
May 7, 2018

#d/dx (e^sin(2x)) = 2e^sin(2x)cos(2x)#

Explanation:

Using the chain rule with #y=sint# and #t= 2x# we have:

#e^sin(2x) = e^y#

#d/dx (e^sin(2x)) = d/dy (e^y) * dy/dx = e^y * dy/dx#

and similary:

#dy/dx = d/dx sint = d/dt sint * (dt)/dx = cost *dt/dx#

and finally:

#dt/dx = d/dx (2x) = 2#

Putting it together:

#d/dx (e^sin(2x)) = 2e^sin(2x)cos(2x)#

May 7, 2018

#2e^(sin2x)cos2x#

Explanation:

Given: #e^(sin2x)#.

Apply the chain rule, which states that,

#dy/dx=dy/(du)*(du)/dx#

Let #u=sin2x#, then we must find #(du)/dx#.

Again, use the chain rule. Let #z=2x,:.(dz)/dx=2#.

Then #y=sinz,dy/(dz)=cosz#.

Combine to get: #cosz*2=2cosz#.

Substitute back #z=2x# to get:

#=2cos(2x)#

Now, we go back to the original derivative.

From here, #y=e^u,:.dy/(du)=e^u#, and now we can combine our results from the previous findings, where #(du)/dx=2cos2x#.

#:.dy/dx=e^u*2cos2x#

#=2e^ucos2x#

Substitute back #u=sin2x# to get:

#=2e^(sin2x)cos2x#