#r=f(theta)=3sin(theta/2-pi/4)#
Relating this to Cartesian coordinates, we know that
#x=rcostheta=3costhetasin(theta/2-pi/4)#
Hence #(dx)/(d theta)=-3sinthetasin(theta/2-pi/4)+3/2costhetacos(theta/2-pi/4)#
#y=rsintheta=3sinthetasin(theta/2-pi/4)#
Hence #(dy)/(d theta)=3costhetasin(theta/2-pi/4)+3/2sinthetacos(theta/2-pi/4)#
and hence #(dy)/(dx)=(3costhetasin(theta/2-pi/4)+3/2sinthetacos(theta/2-pi/4))/(-3sinthetasin(theta/2-pi/4)+3/2costhetacos(theta/2-pi/4))#
= #(2costhetasin(theta/2-pi/4)+sinthetacos(theta/2-pi/4))/(-2sinthetasin(theta/2-pi/4)+costhetacos(theta/2-pi/4))#
and slope at #theta=(3pi)/8# is
#(2cos((3pi)/8)sin((3pi)/16-pi/4)+sin((3pi)/8)cos((3pi)/16-pi/4))/(-2sin((3pi)/8)sin((3pi)/16-pi/4)+cos((3pi)/8)cos((3pi)/8-pi/4))#
= #(-2cos((3pi)/8)sin(pi/16)+sin((3pi)/8)cos(pi/16))/(2sin((3pi)/8)sin(pi/16)+cos((3pi)/8)cos(pi/16)#