What is the vertex form of #y=12.25x^2 - 52.5x +110.25?

1 Answer
Mar 13, 2016

#color(blue)( y=49/4(x- 15/7)^2 +216/4)#

Explanation:

Given:

#color(green)(y=12.25x^2-52.5x+110.25)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~
Write as:

#color(blue)(" "y=49/4x^2 -105/2x+ 441/4)#

#color(brown)("Factor out "49/4)#

#color(blue)(" "y=49/4(x^2- 30/7x) +441/4)#

#color(brown)("Consider just the right hand side")#

#color(brown)(Apply "1/2xx-30/7x = -15/7x)#

# color(blue)(" "49/4(x^2- 15/7x) +441/4)#

#color(brown)("Remove the "x" from " -15/7x)#

# color(blue)(" "49/4(x^2- 15/7) +441/4)#

#color(brown)("Move the index of 2 from "x^2" to outside the bracket")#

# color(blue)(" "49/4(x- 15/7)^2 +441/4)#

#color(brown)("Now add the correction that compensates for the error we")#
#color(brown)("introduced by changing the brackets content.")#

#color(brown)("Let "k" be a constant")#

# color(blue)(" "y=49/4(x- 15/7)^2 +441/4+ k#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Consider the #-15/7# from inside the brackets

Then #(-15/7)^2+k=0#

#=> k = -49/4(15/7)^2 =-56 1/4=-225/4#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(brown)(y=49/4(x- 15/7)^2 +441/4+ k#

Becomes
#color(blue)( y=49/4(x- 15/7)^2 +441/4-225/4)#

#color(blue)( y=49/4(x- 15/7)^2 +216/4)#

Tony B