What is the vertex form of #y=13x^2 + 14x + 24#?

1 Answer
Jul 17, 2018

Vertex form of equation is #y=13( x+7/13)^2-20 3/13#

Explanation:

#y=13 x^2+14 x+24# or

#y=13 (x^2+14/13 x)+24# or

#y=13 {x^2+14/13 x+(7/13)^2}-49/13+24# or

#y=13( x+7/13)^2-263/13# or

#y=13( x+7/13)^2-20 3/13#. Comparing with standard vertex

form of equation # f(x)=a(x-h)^2+k ; (h,k)# being vertex

we find here #h= -7/13 , k=-20 3/13 :.# Vertex is at

#(-7/13 , -20 3/13)# . Vertex form of equation is

#y=13( x+7/13)^2-20 3/13# [Ans]