What is the vertex form of #y=-2x^2 + 2x+3#?

1 Answer
Apr 8, 2016

#y=(-2)(x-1/2)^2+3 1/2#

Explanation:

The general vertex form is:
#color(white)("XXX")y=m(x-a)^2+b#

Given:
#color(white)("XXX")y=-2x^2+2x+3#

Extract the #m# component:
#color(white)("XXX")y=(-2)(x^2-1x)+3#

Complete the square
#color(white)("XXX")y=(-2)(x^2-1x[+(1/2)^2])+3[-(-2)(1/2)^2]#

#color(white)("XXX")y=(-2)(x-1/2)^2+ 3 1/2#

which is the vertex form with vertex at #(1/2, 3 1/2)#

graph{-2x^2+2x+3 [-1.615, 3.86, 1.433, 4.17]}