What is the vertex form of #y=-3x^2-6x-3#?
1 Answer
Jun 15, 2017
#y=-3(x+1)^2#
Explanation:
Given -
#y=-3x^2-6x-3#
Vertex -
x-coordinate of the vertex
#x=(-b)/(2a)=(-(-6))/(2 xx(-3))=6/(-6)=-1#
Y-coordinate of the vertex
At
#y=-3(-1)^2-6(-1)-3=-3+6-3=0#
Vertex
Vertex form of the equation is -
#y=a(x-h)^2+k#
#a=-3# - coefficient of#x^2#
#h=-1#
#k=2#
#y=-3(x+1)^2+0#
#y=-3(x+1)^2#
Watch this video also
enter link description here