# What is the vertex form of #y=-3x^2-6x-3#?

##### 1 Answer

Jun 15, 2017

#y=-3(x+1)^2#

#### Explanation:

Given -

#y=-3x^2-6x-3#

Vertex -

x-coordinate of the vertex

#x=(-b)/(2a)=(-(-6))/(2 xx(-3))=6/(-6)=-1#

Y-coordinate of the vertex

At

#y=-3(-1)^2-6(-1)-3=-3+6-3=0#

Vertex

Vertex form of the equation is -

#y=a(x-h)^2+k#

#a=-3# - coefficient of#x^2#

#h=-1#

#k=2#

#y=-3(x+1)^2+0#

#y=-3(x+1)^2#

Watch this video also

enter link description here