What is the vertex form of #y= 4x^2 -12x + 9 #?

1 Answer
Jun 17, 2017

#y=4(x-3/2)^2#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.

#"for a parabola in standard form " y=ax^2+bx+c#

#"the x-coordinate of the vertex is " x_(color(red)"vertex")=-b/(2a)#

#y=4x^2-12x+9" is in standard form"#

#"with " a=4,b=-12,c=9#

#rArrx_(color(red)"vertex")=-(-12)/8=3/2#

#"substitute this value into function for y-coordinate"#

#y=4(3/2)^2-12(3/2)+9=9-18+9=0#

#rArrcolor(magenta)"vertex " =(3/2,0)#

#rArry=4(x-3/2)^2larrcolor(red)" in vertex form"#