What is the vertex form of #y=-5/8x^2+7/4x +2/3#?

1 Answer
Feb 8, 2018

#y=-5/8(x-7/5)^2+227/120#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"given the equation in standard form"#

#•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0#

#"then the x-coordinate of the vertex is"#

#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#

#y=-5/8x^2+7/4x+2/3" is in standard form"#

#"with "a=-5/8,b=7/4" and "c=2/3#

#rArrx_(color(red)"vertex")=-(7/4)/(-5/4)=7/5#

#"substitute this value into the equation for y"#

#y_(color(red)"vertex")=-5/8(7/5)^2+7/4(7/5)+2/3=227/120#

#rArry=-5/8(x-7/5)^2+227/120larrcolor(blue)"in vertex form"#