What is the vertex form of #y=-x^2+2x-2#?

1 Answer
Feb 5, 2016

#y=(-1)(x-1)^2+(-1)#

Explanation:

The general vertex form is
#color(white)("XXX")y=m(x-a)^2+b# with vertex at #(a,b)#

Given
#color(white)("XXX")y=-x^2+2x-2#

#color(white)("XXX")y=(-1)(x^2-2x+2)#

#color(white)("XXX")y=(-1)(x^2-2x+1+1)#

#color(white)("XXX")y=(-1)(x^2-2x+1)-1#

#color(white)("XXX")y=(-1)(x-1)^2 + (-1)#

which is the vertex form with #m=(-1), a=1, and b=(-1)#
graph{-x^2+2x-2 [-3.215, 6.65, -4.532, 0.4]}