What is the vertex form of #y=x^2 - 3x +4#?
1 Answer
Jun 5, 2017
Explanation:
#"the equation of a parabola in vertex form is"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.
#"for a parabola in standard form " y=ax^2+bx+c#
#x_(color(red)"vertex")=-b/(2a)#
#y=x^2-3x+4" is in this form"#
#"with " a=1,b=-3,c=4#
#rArrx_(color(red)"vertex")=-(-3)/2=3/2#
#"substitute this value into function to obtain y"#
#rArry_(color(red)"vertex")=(3/2)^2-(3xx3/2)+4=7/4#
#rArrcolor(magenta)"vertex "=(3/2,7/4)#
#rArry=(x-3/2)^2+7/4larrcolor(red)" in vertex form"#