What is the vertex form of #y=-x^2+5x#?
2 Answers
Dec 21, 2017
Explanation:
To find the vertex form, you need to complete the square:
Dec 21, 2017
#y=-(x-5/2)^2+25/4#
Explanation:
Given -
#y=-x^2+5x#
Vertex
#x=(-b)/(2a)=(-5)/(-1xx2)=5/2#
At
#y=-(5/2)^2+5(5/2)=-25/4+25/2=(-25+50)/4=25/4#
Vertex
The vertex form of the quadratic equation is -
#y=a(x-h)^2+k#
Where -
#a=-1# - coefficient of#x^2#
#h=5/2# - x - coordinate of the vertex
#k=25/4# - y - coordinate of the vertex
Substitute these values in the formula
#y=-1(x-5/2)^2+25/4#
#y=-(x-5/2)^2+25/4#