How do you find the general indefinite integral of #(13x^2+12x^-2)dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Massimiliano Feb 15, 2015 The answer is: #13/3x^3-12x^-1+c# Using this integral: #int[f(x)]^nf'(x)dx=[f(x)]^(n+1)/(n+1)+c#. So: #int(13x^2+12x^-2)dx=13x^(2+1)/(2+1)+12x^(-2+1)/(-2+1)+c=# #=13/3x^3-12x^-1+c#. Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 5628 views around the world You can reuse this answer Creative Commons License