Vertex form
An equation in the form:
#color(white)("XXXX")##f(x)=m(x-a)^2+b#
has its vertex at #(a,b)#
Given: #f(x) = -x^2-6x-5#
Extract #m# for the vertex form:
#color(white)("XXXX")##f(x) = (-1)(x^2+6x) -5#
Complete the square
#color(white)("XXXX")##f(x) = (-1)(x^2+6x+9) -5 - (-1)(9)#
Simplifying
#color(white)("XXXX")##f(x) = (-1)(x+3)^2 +4#
#color(white)("XXXX")##color(white)("XXXX")#which is in vertex form with the vertex at #(-3,4)#
y vertex coordinate formula
An equation in the form:
#color(white)("XXXX")##f(x)=ax^2+bx+c#
has the #f(x)# coordinate at
#color(white)("XXXX")##c-b^2/(4a)#
#color(white)("XXXX")##color(white)("XXXX")#[this is a result of the significance of the discriminant]
For #f(x)=-x^2-6x-5#
#color(white)("XXXX")##a=-1##color(white)("XXXX")##b=-6##color(white)("XXXX")##c=-5#
and the #f(x)# coordinate of the vertex is at
#color(white)("XXXX")##-5 - ((-6)^2/(4(-1))) = 4#
Solving for the corresponding #x# coordinate:
#color(white)("XXXX")##-x^2-6x-5 = 4#
#color(white)("XXXX")##-x^2-6x-9 = 0#
#color(white)("XXXX")##(x^2+6x+9) = 0#
#color(white)("XXXX")##(x+3)^2 = 0#
#color(white)("XXXX")##rarr##color(white)("XXXX")##x=-3#
and again, we have the vertex is at #(-3,4)#