Two corners of an isosceles triangle are at #(7 ,9 )# and #(5 ,3 )#. If the triangle's area is #64 #, what are the lengths of the triangle's sides?

1 Answer

the sides are:#2sqrt10=6.32456#
and #sqrt(10490)/5=20.4841#
and #sqrt(10490)/5=20.4841#

Explanation:

To compute for the sides, we need to obtain the height #h# using the area#=64# and the base #b# that can be solved using the points (7, 9) and (5, 3)

We solve for the base first
#b=sqrt((7-5)^2+(9-3)^2)#
#b=sqrt(4+36)=sqrt(40)=2sqrt10#

Area#=1/2*b*h#
#64=1/2*2*sqrt10*h#
#h=64/sqrt10=(32sqrt10)/5#

the height h divides the triangle into 2 equal parts and it passes thru the midpoint of the base b. So , we have a right triangle formed
Let x and x be the two unknown equal sides

#x=sqrt((b/2)^2+h^2)=sqrt(((2sqrt10)/2)^2+((32sqrt10)/5)^2)#
#x=sqrt(10+(1024(10))/25)=sqrt((250+10240)/25)#
#x=sqrt((10490)/25)#
#x=sqrt(10490)/5#
#x=20.4841" "# units

God bless....I hope the explanation is useful.