What is the vertex form of #y=1/3x^2 - 2/3x +1/6# ?

1 Answer
Mar 14, 2016

#color(red)(y=1/3(x-1)^2-1/6)#

Explanation:

Given:#" "y=1/3x^2-2/3x+1/6#..........................(1)

Write as:#" "y=1/3(x^2-2x)+1/6#

What we are about to do will introduce an error. Compensate for this error by adding a constant

Let #k# be a constant

#y=1/3(x^2-2x)+k+1/6#

#1/2# the coefficient of #x#

#y=1/3(x^2-x)+k+1/6#

'Get rid' of the single #x# leaving its coefficient of 1

#y=1/3(x^2-1)+k+1/6#

Move the index (power) of 2 to outside the brackets

#y=1/3(x-1)^2+k+1/6#...........................(2)

#color(brown)("This is your basic form. Now we need to find "k)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the form #1/3(?-1)^2#. It produces the error of

#1/3xx(-1)^2 = +1/3#

To 'get rid' of this error we make #k=-1/3#

So equation (2) becomes

#y=1/3(x-1)^2 -1/3+1/6" "...........................(2_a)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(red)(y=1/3(x-1)^2-1/6)#

Tony B