How do you write the Vertex form equation of the parabola # y = x^2 - 10x +17#?

1 Answer
Mar 16, 2016

#color(blue)("Vertex form " ->y=(x-5)^2-8)#

Explanation:

This process introduces an error that has to be compensated for
For a really detailed explanation of the process see my solution
http://socratic.org/s/asNAQ6ru

Different values but the method is sound
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let #k# be a corrective constant

Given:#" "y=x^2-10x+17#

Add the corrective constant

#" "y=x^2-10x+k+17#

Insert the first 2 terms into brackets

#y=(x^2-10x)+k+17#

Take the power (index) outside the bracket

#y=(x-10x)^2+k+17#

Apply #(1/2)xx10x# and get rid of the #x#

#y=(x-5)^2+k+17#

'~~~~~~~~~~~~~~~~~~~ Note ~~~~~~~~~~~~~~~~~~~~~~~~~~
The introduced error is from the #(-5)^2=+25# when you square the bracket. So #k=-25#

#" "(x-5)^2 = x^2-10x color(red)(+(-5)^2)#

The #color(red)(+(-5)^2)# is not in the original equation!!!
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#y=(x-5)^2color(red)(-25)+17#

#color(blue)("Vertex form " ->y=(x-5)^2-8)#

#color(magenta)("You can see from the graph that the two equation produce the same plot.")#
enter image source here