What is the vertex form of #y= 2x^2+7x-15#?

1 Answer
Mar 23, 2016

#y=2(x+7/4)^2+169/8#

Explanation:

Given -

#y=2x^2+7x-15#

Find the vertex

#x=(-b)/(2a)= (-7)/(2 xx 2)=-7/4#

#y=2(-7/4)^2+7(-7/4)-15#
#y=2(49/16)-49/4-15#
#y=49/8-49/4-15=169/8#

Quadratic equation in vertex form

#y=a(x-h)^2+k#

Where -

#a# is the co-efficient of #x^2#
#h# is #x #coordinate of the vertex
#k# is the #y# coordinate of the vertex

#y=2(x-(-7/4))^2+169/8#
#y=2(x+7/4)^2+169/8#

Watch this video also