How do you integrate dy / (4(y^(1/2))?

1 Answer
Jun 3, 2016

1/2y^(1/2)+C

Explanation:

[1]" "intdy/(4(y^(1/2)))

First you can bring 1/4 outside the integral symbol.

[2]" "=1/4intdy/y^(1/2)

Next, bring y^(1/2) to the numerator.

[3]" "=1/4inty^(-1/2)dy

Use the power rule: intx^ndx=x^(n+1)/(n+1)+C (where C is a constant)

[4]" "=1/4*y^(-1/2+1)/(-1/2+1)+C

[5]" "=1/4*y^(1/2)/(1/2)+C

[6]" "=color(red)(1/2y^(1/2)+C)