A circle has a center that falls on the line #y = 3/8x +5 # and passes through # ( 7 ,3 )# and #(5 ,1 )#. What is the equation of the circle?

1 Answer
Oct 5, 2016

#"equation of circle is :"#
#(x-2.18)^2+(y-5.82)^2=31.16#

Explanation:

#"step-1 : draw the line "y=3/8 x+5 #

enter image source here

#"step-2 : locate "P_1 " and "P_2#

enter image source here

#"step -3 : draw a line segment between " P_1 and " P_2#

enter image source here

#"step-4 : find the middle point of line segment"#

enter image source here

#P_x=(7+5)/2=6#
#P_y=(3+1)/2=2#

#P=(6,2)#

#"step-5 : draw a line perpendicular to line segment and passing through P"#

enter image source here

#"the red line's slope : "m_("red")#
#"segment's slope : "m_("segment")#

#m_("segment")*m_("red")=-1#

#1*m_("red")=-1#

#m_("red")=-1#

#y-2=-1(x-6)#

#y-2=-x+6#

#color(red)(y+x=8)" the red line equation"#

#"step-6 : now find the coordinate of center of circle (O)"#

enter image source here

#"use the two equation :"#

#y=3/8 x+5#

#x+y=8#

#x+3/8 x+5=8#

#(11x)/8=8-5#

#11x=24#

#x=24/11=2.18#

#2.18+y=8#

#y=8-2.18=5.82#

#O=(2.18,5.82)#

#"step-7 : find distance between O and " P_1" (r)"#

#r^2=6-2.18)^2+(2-5.82)^2)#

#r^2=10.24+14.59=31.16#

#"step-8 : write equation"#

enter image source here

#(x-a)^2+(y-b)^2=r^2#

#(a,b)" center coordinates"#

#(x-2.18)^2+(y-5.82)^2=31.16#