Let's factorise the equation
#p^5-p=p(p^4-1)=p(p^2+1)(p^2-1)#
#=p(p^2+1)(p+1)(p-1)#
The term #(p^2+1)>0#
Let #f(p)=p^5-p#
Let's do the sign chart
#color(white)(aaaa)##p##color(white)(aaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##0##color(white)(aaaa)##1##color(white)(aaaa)##+oo#
#color(white)(aaaa)##p+1##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaa)##+##color(white)(aaa)##+#
#color(white)(aaaa)##p##color(white)(aaaaaaaa)##-##color(white)(aaaa)##-##color(white)(aaa)##+##color(white)(aaa)##+#
#color(white)(aaaa)##p-1##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaa)##-##color(white)(aaa)##+#
#color(white)(aaaa)##f(p)##color(white)(aaaaa)##-##color(white)(aaaaa)##+##color(white)(aaa)##-##color(white)(aaa)##+#
So #f(p)>0# when #p in ] -1,0 [uu ] 1,+oo [#
graph{x^5-x [-8.89, 8.89, -4.444, 4.445]}