How do you find the indefinite integral of #int -24x^5 dx#?

1 Answer
Nov 24, 2016

#int-24x^5dx=-4x^6+C#

Explanation:

Use the rule #intaf(x)dx=aintf(x)dx# to move the constant out of the integral.

#int-24x^5dx=-24intx^5dx#

Now use this integral rule, which is the opposite of the power rule for differentiation, to integrate the remaining term: #intx^ndx=x^(n+1)/(n+1)+C#

#-24intx^5dx=-24(x^(5+1)/(5+1))+C=-24/6x^6+C=-4x^6+C#