Let's find the roots of the equation
#2x^2+5x-12=0#
This is a simultaneous equation, #ax^2+bx+c=0#
We calculate the discriminant,
#Delta=b^2-4ac=25-4*2*-12=121#
#delta>0#, so we have 2 real roots
The roots are
#x=(-b+-sqrtDelta)/(2a)#
#=(-5+-11)/4#
#x_1=-4# and #x_2=6/4=3/2#
Let #f(x)=2x^2+5x-12#
We do a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-4##color(white)(aaaa)##3/2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+4##color(white)(aaaaaa)##-##color(white)(aaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-3/2##color(white)(aaaaa)##-##color(white)(aaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaa)##-##color(white)(aaaa)##+#
We need #f(x)>=0#
#x in ] -oo,-4] uu [3/2, oo[#
graph{2x^2+5x-12 [-12.66, 12.66, -6.34, 6.32]}