We rewrite the equation as
#7-7/(y+1)<0#
#(7(y+1)-7)/(y+1)<0#
#(7y+7-7)/(y+1)<0#
#(7y)/(y+1)<0#
Let #f(y)=(7y)/(y+1)#
and #y!=-1#
We do a sign chart
#color(white)(aaaa)##y##color(white)(aaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##0##color(white)(aaaa)##+oo#
#color(white)(aaaa)##y##color(white)(aaaaaaaa)##-##color(white)(aa)##∥##color(white)(a)##-##color(white)(aa)##+#
#color(white)(aaaa)##y+1##color(white)(aaaa)##-##color(white)(aaa)##∥##color(white)(a)##+##color(white)(aa)##+#
#color(white)(aaaa)##f(y)##color(white)(aaaaa)##+##color(white)(aaa)##∥##color(white)(a)##-##color(white)(aa)##+#
Therefore,
#f(y)<0# when #x in ] -1,0 [#
graph{7x/(x+1) [-41.1, 41.1, -20.55, 20.57]}