Let's rewrite the equation
#16x^2-15x-1<0#
Let #f(x)=16x^2-15x-1#
The domain of #f(x)# is #D_f(x)=RR#
We can factorise the RHS
#16x^2-15x-1=(16x+1)(x-1)#
Now we can establish the sign chart
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-oo##color(white)(aaaaa)##-1/16##color(white)(aaaaa)##1##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##16x+1##color(white)(aaaaaaaa)##-##color(white)(aaaaaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaaaaaaaa)##-##color(white)(aaaaaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaaa)##+##color(white)(aaaaaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)<0#, when #x in ] -1/16 , 1 [#