Let`s rewrite the inequality
#x^2+6x-7>=0#
We factorise
#(x-1)(x+7)>=0#
Let #f(x)=(x-1)(x+7)#
The domain of #f(x)# is #D_f(x)=RR#
We do a sign chart
#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaa)##-7##color(white)(aaaaa)##1##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##x+7##color(white)(aaaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaaaa)##-##color(white)(aaaaa)##-##color(white)(aaaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaaaa)##-##color(white)(aaaaa)##+#
Therefore,
#f(x)>=0#, when # x in ] -oo,-7] uu [ 1, +oo[ #