Let #f(x)=(x-1)(x-2)(x-3)#
Now, we can establish the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##1##color(white)(aaaaaa)##2##color(white)(aaaaaaa)##3##color(white)(aaaaaa)##-oo#
#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##x-3##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aaaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaaa)##-##color(white)(aaaaa)##+#
Therefore,
#f(x)>=0# when # x in [1 ,2 ] uu [3, +oo [#