How do you integrate #int y^2sqrtydy#?

1 Answer
Jan 4, 2017

#int \ y^2sqrt(y) \ dy = 2/7y^3sqrt(y) + c#

Explanation:

Using fractional powers, and the rule of indices #a^ma^n=a^(m+n)# we can write:

#int \ y^2sqrt(y) \ dy = int \ y^2 \ y^(1/2) \ dy#
# " "= int \ y^(5/2) \ dy#

Then using the power rule for integration #int x^n \ dx=x^(n+1)/(n+1)# we have:

#int \ y^2sqrt(y) \ dy = y^(7/2)/(7/2) + c#
# " "= 2/7y^(7/2) + c#
# " "= 2/7y^3sqrt(y) + c#