How do you simplify #(p^3-1)/(5-10p+5p^2)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer Shwetank Mauria Jan 24, 2017 #(p^3-1)/(5-10p+5p^2)=(p^2+p+1)/(5(p-1))# or #(p^2+p+1)/(5p-5)# Explanation: To simplify #(p^3-1)/(5-10p+5p^2)#, we should first factorize numerator and denomiantor. #p^3-1=p^3-p^2+p^2-p+p-1# = #p^2(p-1)+p(p-1)+1(p-1)# = #(p^2+p+1)(p-1)# and #5-10+5p^2=5(p^2-2p+1)# = #5(p^2-p-p+1)=5(p(p-1)-1(p-1))=5(p-1)(p-1)# Hence #(p^3-1)/(5-10p+5p^2)# = #((p^2+p+1)(p-1))/(5(p-1)(p-1))# = #((p^2+p+1)cancel((p-1)))/(5(p-1)cancel((p-1)))# = #(p^2+p+1)/(5(p-1))# or #(p^2+p+1)/(5p-5)# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1316 views around the world You can reuse this answer Creative Commons License