How do you integrate #int (x+1)(3x-2)dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Narad T. Feb 5, 2017 The answer is #=x^3+x^2/2-2x+C# Explanation: We need #intx^ndx=x^(n+1)/(n+1)+C# #(x+1)(3x-2)=3x^2+x-2# Therefore, #int(x+1)(3x-2)dx=3intx^2dx+intxdx-int2dx# #=3/3x^3+x^2/2-2x+C# #=x^3+x^2/2-2x+C# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 9834 views around the world You can reuse this answer Creative Commons License