Use trig identity: #cos 2a = 1 -2sin^2 a#
In this case:
#1 - 2sin^2 (x/2) + sin (x/2) = 0#
Bring it to standard form:
#2sin^2 (x/2) - sin x - 1 = 0#
Solve this quadratic equation for #sin (x/2)#:
Since a + b + c = o, use shortcut.
The 2 real roots are: #sin (x/2) = 1# and #sin (x/2) = c/a = - 1/2#
Use trig table and unit circle -->
A. #sin (x/2) = 1# --> #x/2 = pi/2 + 2kpi# --> #x = pi + 4kpi#
B. #sin (x/2) = - 1/2# --> unit circle -->
a. #x/2 = (7pi)/6 + 2kpi# --> #x = (7pi)/3 + 4kpi# or #x = pi/3 + 4kpi#
b. #x/2 = (11pi)/6 + 2kpi# --> #x = (11pi)/3 + 4kpi#, or
#x = (5pi)/3 + 4kpi#