How do you find the indefinite integral of #int (2sintheta+3costheta)#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Narad T. Mar 5, 2017 The answer is #=3sintheta-2costheta+C# Explanation: We need #intsinxdx=-cosx# #intcosxdx=sinx# Therefore, #int(2sin theta+3costheta) d theta# #=2intsinthetad theta+3intcosthetad theta# #=-2costheta+3sintheta+C# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 1984 views around the world You can reuse this answer Creative Commons License