Question #a26d7

1 Answer
Mar 14, 2017

#y=+1.15x^2+3.85x-2#

Explanation:

The quadratic is a parabolic equation. One of its standardised forms is:

#y=ax^2+bx+c#

We are given 3 points for #(x,y)#
There are 3 unknowns #{a,b,c}#

So we have 3 unknowns and 3 equations thus solvable.

Point A
#P_A-> (1,3) ->3=a(1)^2+b(1)+c" "..............Equation(1)#

Point B
#P_B->(-4,1)->1=a(-4)^2+b(-4)+c" "..Equation(2)#

Point C
#P_C->(0,-2)->-2=a(0)^2+b(0)+c" ".......Equation(3)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the value of "c)#

Consider equation(1) : this make life a bit easier as we can directly read off the value of #c#

#color(green)(-2=0+0+c => c=-2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the value of "b)#

Substituting for c we have:

#3=a(1)^2+b(1)-2" "..............Equation(1)#
#1=a(-4)^2+b(-4)-2" "......Equation(2)#

#3=a+b-2" "..............Equation(1)#
#1=16a-4b-2" ".........Equation(2)#

To find b we need to get rid of a so multiply equation (1) by 16 and then subtract

#48=16a+16b-32" ".....................Equation(1_a)#
#ul(color(white)(4)1=16a-color(white)(1)4b-2)" "larr" subtract " Equation(2)#
#47=color(white)(.)0color(white)(.)+20b-30#

#color(green)(b=(47+30)/20=3.85)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the value of "a)#
Substitute for b and c in equation (say ) 1: looks easiest

#3=a+b+c" "->3=a+3.85-2#

#color(green)(a=+1.15)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#y=+1.15x^2+3.85x-2#

Tony B