For quadrilateral ABCD, the coordinates of vertices A and B are A(1,2) and B(2,-2). Match each set of coordinates for vertices C and D, that is the most specific way to classify the quadrilateral.?

C(-6,-4), D(-7,0)

C(6,-1), D(5,3)

C(-1,-4), D(-2,0)

C(1,-6), D(0,-2)

1 Answer
Mar 21, 2017

A - Rectangle B - Square
C - Parallelogram D - Rhombus

Explanation:

We are given #A(1,2), B(2,-2)# and hence #AB=sqrt((2-1)^2+(-2-2)^2)=sqrt17#. Further slope of #AB# is #(-2-2)/(2-1)=-4/1=-4#.

Case A - #C(-6,-4), D(-7,0)#

As #CD=sqrt((-7-(-6))^2+(0-(-4))^2)=sqrt17# and slope of #CD# is #(0-(-4))/(-7-(-6))=4/(-1)=-4#

As #AB=CD# and #AB#||#CD# slopes being equal, ABCD is a parallelogram.
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x+6)^2+(y+4)^2-0.08)((x+7)^2+y^2-0.08)=0 [-10, 10, -5, 5]}

Case B - #C(6,-1), D(5,3)#

As #CD=sqrt((5-6)^2+(3-(-1))^2)=sqrt17# and slope of #CD# is #(0-(-4))/(-7-(-6))=4/(-1)=-4#

Further, #BC=sqrt((6-2)^2+(-1-(-2))^2)=sqrt17# and slope of #BC# is #(-1-(-2))/(6-2)=1/4#

As #BC=AB# and they are perpendicular (as product of slopes is #-1#), ABCD is a square.
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x-6)^2+(y+1)^2-0.08)((x-5)^2+(y-3)^2-0.08)=0 [-10, 10, -5, 5]}

Case C - #C(-1,-4), D(-2,0)#

As mid point of #AC# is #((1-1)/2,(2-4)/2)# i.e. #(0,-1)# and midpoint of #BD# is #((2-2)/2,(-2+0)/2# i.e. #(0,-1)# i.e. midpoints of #AC# and #BD# are same,

but, #BC=sqrt((2-(-1))^2+(-2-(-4))^2)=sqrt13# i.e. #AB!=BC# and hence ABCD is a parallelogram.
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x+1)^2+(y+4)^2-0.08)((x+2)^2+y^2-0.08)=0 [-10, 10, -5, 5]}

Case D - #C(1,-6), D(0,-2)#

As mid point of #AC# is #((1+1)/2,(2-6)/2)# i.e. #(1,-2)# and midpoint of #BD# is #((2+0)/2,(-2+(-2))/2# i.e. #(1,-2)# i.e. midpoints of #AC# and #BD# are same,

and, #BC=sqrt((2-1)^2+(-2-(-6))^2)=sqrt17# i.e. #AB=BC# and hence ABCD is a rhombus.
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x-1)^2+(y+6)^2-0.08)(x^2+(y+2)^2-0.08)=0 [-14, 14, -7, 7]}