For quadrilateral ABCD, the coordinates of vertices A and B are A(1,2) and B(2,-2). Match each set of coordinates for vertices C and D, that is the most specific way to classify the quadrilateral.?
C(-6,-4), D(-7,0)
C(6,-1), D(5,3)
C(-1,-4), D(-2,0)
C(1,-6), D(0,-2)
C(-6,-4), D(-7,0)
C(6,-1), D(5,3)
C(-1,-4), D(-2,0)
C(1,-6), D(0,-2)
1 Answer
A - Rectangle B - Square
C - Parallelogram D - Rhombus
Explanation:
We are given
Case A -
As
As
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x+6)^2+(y+4)^2-0.08)((x+7)^2+y^2-0.08)=0 [-10, 10, -5, 5]}
Case B -
As
Further,
As
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x-6)^2+(y+1)^2-0.08)((x-5)^2+(y-3)^2-0.08)=0 [-10, 10, -5, 5]}
Case C -
As mid point of
but,
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x+1)^2+(y+4)^2-0.08)((x+2)^2+y^2-0.08)=0 [-10, 10, -5, 5]}
Case D -
As mid point of
and,
graph{((x-1)^2+(y-2)^2-0.08)((x-2)^2+(y+2)^2-0.08)((x-1)^2+(y+6)^2-0.08)(x^2+(y+2)^2-0.08)=0 [-14, 14, -7, 7]}