What is the net area between #f(x) = -ln(x^2+1) # and the x-axis over #x in [1, 2 ]#?
1 Answer
The net area will be
Explanation:
Start by finding the antiderivative of
#int f(x) = -int ln(x^2 + 1)#
Use integration by parts. Let
#int u dv = uv - int v du#
#int ln(x^2 + 1) = ln(x^2 + 1)x - int x(2x)/(x^2 + 1)dx#
#int ln(x^2 + 1) = xln(x^2 + 1) - 2int x^2/(x^2 + 1) dx#
#int ln(x^2+ 1) = xln(x^2 + 1)- 2int 1 dx+ 2int 1/(x^2 + 1)dx#
#int ln(x^2 + 1) = -xln(x^2 + 1) + 2x + 2arctanx#
#-int ln(x^2 + 1) = 2x - 2arctanx - xln(x^2 + 1) + C#
Now let's consider the region whose area we must determine.
We now set up a definite integral.
#int_1^2 ln(x^2 + 1)# . This will make:
#A = 2(2) - 2arctan(2) - 2ln(5) - (2 - 2arctan(1) - ln(2))#
#A ~~ -1.17#
Hopefully this helps!