What is the net area between #f(x) = -ln(x^2+1) # and the x-axis over #x in [1, 2 ]#?

1 Answer
Apr 30, 2017

The net area will be #-1.17# square units.

Explanation:

Start by finding the antiderivative of #f(x)#, call it #g(x)#.

#int f(x) = -int ln(x^2 + 1)#

Use integration by parts. Let #u = ln(x^2 + 1)# and #dv = 1dx#. Then #du = (2x)/(x^2 + 1)dx# and #v = x#.

#int u dv = uv - int v du#

#int ln(x^2 + 1) = ln(x^2 + 1)x - int x(2x)/(x^2 + 1)dx#

#int ln(x^2 + 1) = xln(x^2 + 1) - 2int x^2/(x^2 + 1) dx#

#int ln(x^2+ 1) = xln(x^2 + 1)- 2int 1 dx+ 2int 1/(x^2 + 1)dx#

#int ln(x^2 + 1) = -xln(x^2 + 1) + 2x + 2arctanx#

#-int ln(x^2 + 1) = 2x - 2arctanx - xln(x^2 + 1) + C#

Now let's consider the region whose area we must determine.

enter image source here

We now set up a definite integral.

#int_1^2 ln(x^2 + 1)#. This will make:

#A = 2(2) - 2arctan(2) - 2ln(5) - (2 - 2arctan(1) - ln(2))#

#A ~~ -1.17#

Hopefully this helps!