How do you solve #sqrt(3x+4)-sqrt(2x-7)=3#?
1 Answer
May 30, 2017
Explanation:
We have:
#sqrt(3x +4) = 3 + sqrt(2x- 7)#
Squaring both sides, we get:
#(sqrt(3x+ 4))^2 = (3 + sqrt(2x - 7))^2#
#3x + 4 = 9 + 6sqrt(2x- 7) + 2x - 7#
Regrouping non-square root terms to one side of the equation, we get:
#x + 2 = 6sqrt(2x- 7)#
Square again:
#x^2 + 4x + 4 = 36(2x- 7)#
#x^2 +4x + 4 = 72x - 252#
#x^2 - 68x + 256 =0#
#(x -4)(x -64) = 0#
#x= 4 or 64#
Now test to see whether or not the solutions are valid.
Testing
#sqrt(3(4) + 4) =^? 3 + sqrt(2(4) - 7)#
#4 = 3 + 1 color(green)(√)#
Testing
#sqrt(3(64) + 4) =^? 3 + sqrt(2(64) - 7)#
#sqrt(196) =^? 3 + sqrt(121)#
#14 = 3 + 11 color(green)(√)#
So our solution set is
Hopefully this helps!