How do you write #F(x)=x^2-2x+5# in vertex form?

1 Answer
Jun 20, 2017

#y=(x-1)^2+4#

Explanation:

Given -

#F(x)=x^2-2x+5#

#y=x^2-2x+5#

Vertex

x - coordinate of the vertex

#x=(-b)/(2a)=(-(-2))/(2 xx 1)=2/2=1#

y - coordinate

#y=(1)^2-2(1)+5=1-2+5=4#

Vertex #(1,4)#

Parabola in vertex form

#y=a(x-h)^2+k#

Where -

#a=1# ----- coefficient of #x^2#
#h=1# --- x - coordinate of the vertex
#k=4# --- y - coordinate of the vertex

Substitute these values into the equation.

#y=1(x-1)^2+4#
#y=(x-1)^2+4#
Watch this video