How do you write #F(x)=x^2-2x+5# in vertex form?
1 Answer
Jun 20, 2017
#y=(x-1)^2+4#
Explanation:
Given -
#F(x)=x^2-2x+5#
#y=x^2-2x+5#
Vertex
x - coordinate of the vertex
#x=(-b)/(2a)=(-(-2))/(2 xx 1)=2/2=1#
y - coordinate
#y=(1)^2-2(1)+5=1-2+5=4#
Vertex
Parabola in vertex form
#y=a(x-h)^2+k#
Where -
#a=1# ----- coefficient of#x^2#
#h=1# --- x - coordinate of the vertex
#k=4# --- y - coordinate of the vertex
Substitute these values into the equation.
#y=1(x-1)^2+4#
#y=(x-1)^2+4#
Watch this video