How do you write #3X=4-3X^2# in vertex form?

1 Answer
Jun 28, 2017

#3(x+1/2)^2-19/4#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.

#"the equation of a parabola in standard form " ax^2+bx+c#

#"has the x-coordinate of the vertex at " x_(color(red)"vertex")=-b/(2a)#

#"rearrange " 3x=4-3x^2" into this form"#

#rArr3x^2+3x-4rArry=3x^2+3x-4#

#"with " a=3,b=3" and " c=-4#

#rArrx_(color(red)"vertex")=-3/(6)=-1/2#

#"substitute this value into the standard form for y"#

#rArry_(color(red)"vertex")=3(-1/2)^2+3(1/2)-4=-19/4#

#rArrcolor(magenta)"vertex "=(-1/2,-19/4)#

#rArry=3(x+1/2)^2-19/4larrcolor(red)" in vertex form"#