How do you write the quadratic function in vertex form given vertex (-6,-7) and point (0,-61)?

1 Answer
Aug 15, 2017

#y=-3/2(x+6)^2-7#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.

#"here "(h,k)=(-6,-7)#

#rArry=a(x+6)^2-7#

#"to find a substitute "(0,-61)" into the equation"#

#-61=36a-7rArra=-3/2#

#y=-3/2(x+6)^2-7larrcolor(red)" in vertex form"#