#color(blue)("The teaching bit")#
Inverse means '1 over'
So the inverse of #a# is #1/a#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determining the structure of the whole equation")#
Something changes the invers to the target value.
Let #k# be some constant
Then we have:
#y=1/x xxk color(white)("d")->color(white)("d")y=k/x" "...Equation(1)#
Initial condition #-> y=k/xcolor(white)("ddd")->color(white)("ddd")1/5=k/(-20)#
Multiply both sides by #color(red)(-20)larr# gets #k# on its own.
#color(green)(1/5=k/(-20)color(white)("ddd")->color(white)("ddd")1/5color(red)(xx(-20))=color(white)("d")k/(-20)color(red)(xx(-20))#
#color(white)("ddddddddddd")->color(white)("dddddd")(color(red)(-20))/color(green)(5)color(white)("ddd")=color(white)("ddd")color(green)(k)color(white)("dd")xxcolor(white)("d")(color(red)(-20))/(color(green)(-20))#
But #(-20)/(-20)=+1 and kxx1=k#
# color(white)("dddddddddddd")->color(white)("ddddd") -20/5color(white)("dd") =color(white)("d") k#
#k=-4#
So by substitution in #Equation(1)# we have:
#y=-4/x#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value requested in the question")#
Given that #x=-8/5#
#y=-4/xcolor(white)("d")->color(white)("d")y=-4-:(-8/5)#
Both signs are the same (negative) so the answer is positive (plus)
Turn the #8/5# upside down and change divide into multiply.
#y=(-4)xx(-5/8)color(white)("ddd")->color(white)("ddd")y=(-5)xx(-4/8)#
Remember that the answer id positive.
#color(white)("dddddddddddddddddddd")->color(white)("ddd")y=5xx1/2#
#color(white)("dddddddddddddddddddd")->color(white)("ddd")y=5/2#