How do you solve #(1+(0.064/365))^(365t)=4#?

2 Answers
Oct 16, 2017

#t=346.58#

Explanation:

As #(1+0.004/365)^(365t)=4#, taking logs on both sides, we get

#365tlog(1+0.004/365)=log4#

or #365tlog(1+0.0000109589)=log4#

or #3655txx0.0000047593655=0.60206#

or #365t=0.60206/0.0000047593655=126500#

and #t=126500/365=346.58#

Oct 27, 2017

t~~500ln(2)~~346.57

Explanation:

As #(1+0.004/365)^(365t)=4#, taking lns on both sides, we get

#365t.ln(1+0.004/365)=ln4#

... as #0.004/365< <1:#

... #ln(1+0.004/365=0.004/365

So the expression turns into:

#365t(0.004/365)~~ln(4)#

#0.004t~~ln(4)#

t~~250ln(4)~~500ln(2)~~346.57